CONSTRUCTING NONPROXY SMALL TEST MODULES FOR THE COMPLETE INTERSECTION PROPERTY

نویسندگان

چکیده

Abstract A local ring R is regular if and only every finitely generated -module has finite projective dimension. Moreover, the residue field k a test module: This characterization can be extended to bounded derived category $\mathsf {D}^{\mathsf f}(R)$ , which contains small objects regular. Recent results of Pollitz, completing work initiated by Dwyer–Greenlees–Iyengar, yield an analogous for complete intersections: intersection object in proxy small. In this paper, we study return world -modules, search -modules that are not whenever intersection. We give algorithm construct such modules certain settings, including over equipresented rings Stanley–Reisner rings.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modules with copure intersection property

In this paper, we investigate the modules with the copure intersection property and obtained obtain some related results.  

متن کامل

The small intersection graph relative to multiplication modules

Let $R$ be a commutative ring and let $M$ be an $R$-module. We define the small intersection graph $G(M)$ of $M$ with all non-small proper submodules of $M$ as vertices and two distinct vertices $N, K$ are adjacent if and only if $Ncap K$ is a non-small submodule of $M$. In this article, we investigate the interplay between the graph-theoretic properties of $G(M)$ and algebraic properties of $M...

متن کامل

the small intersection graph relative to multiplication modules

let $r$ be a commutative ring and let $m$ be an $r$-module. we define the small intersection graph $g(m)$ of $m$ with all non-small proper submodules of $m$ as vertices and two distinct vertices $n, k$ are adjacent if and only if $ncap k$ is a non-small submodule of $m$. in this article, we investigate the interplay between the graph-theoretic properties of $g(m)$ and algebraic properties of $m...

متن کامل

The Cohomology of Modules over a Complete Intersection Ring

We investigate the cohomology of modules over commutative complete intersection rings. The first main result is that if M is an arbitrary module over a complete intersection ring R, and if Ext 2n R (M, M) = 0 for some n ≥ 1 then M has finite projective dimension. The second main result gives a new proof of the fact that the support variety of a Cohen-Macaulay module whose completion is indecomp...

متن کامل

A system for constructing relatively small polyhedra from Sonobé modules

Anyone familiar with the Sonobé module has probably assembled both the augmented octahedron and the augmented icosahedron Instructions for both appear in both Kasahara and Takahama and in Mukerji, and can also be found on most of the innumerable websites discoverable by googling the word “Sonobé”. Kasahara and Takahama give some sketchy instructions on how to build some other polyhedra with the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nagoya Mathematical Journal

سال: 2021

ISSN: ['0027-7630', '2152-6842']

DOI: https://doi.org/10.1017/nmj.2021.7